8.	What happens to its kinetic, po	otential, and mechanical	energy as it moves from D \rightarrow	E?
				A

Mechanical: PTS Potential:
$$V$$
 Kinetic: V

9. Calculate the speed of the cart at position E.

$$V = V$$

$$V =$$

Potential: Kinetic: ()

12. Calculate the speed of the cart at position F.

13. A 75.0 kg skateboarder starts at rest and goes down a half pipe that is 9.0 m tall. Ignoring friction, what would be the height he is at when he has a speed of 8.00 m/s down the ramp?

m= 7549

Wgh; = \frac{1}{2} + Wghs (9.8/m/s2)(9m) = = = [(8m/s)2+ (9.8/m/s2) hg h (=5,74m

Unit 7: Work, Power, Mechanical Energy Page 16